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Abstract The cDNA–AFLP technique can be used to
monitor diVerential gene expression, but also for linkage
mapping. Extending previous works, we have now con-
structed an integrated linkage map of the potato transcrip-
tome based on the said technique that has a length of
around 800 cM and contains nearly 700 transcriptome
derived fragments (TDFs). At the same time, most of these
markers are anchored to the bins of a highly saturated refer-
ence map in potato, combining in this way the information
provided by diVerent marker types. Moreover, we detected
and conWrmed an elevated degree of allelic fragments with
this marker type, which was present in nearly half of all
primer combinations and involved around 20% of all frag-
ments. These properties were particularly useful to estab-
lish anchor points for integrating the individual parental
linkage maps. Comparative expression proWling in diVerent
plant materials revealed that only a few additional TDFs
were obtained which were speciWc for mature leaves or
tubers compared to the TDFs present in whole in vitro
plants. Since TDF markers are derived from coding
regions, they generally also represent sequences with a bio-
logical function. In four case studies, co-migrating TDFs in
diVerent Solanum wild species always represented potential
alleles based on elevated homologies among them. Two

resistance gene homologs were identiWed by analysing
TDFs, which were co-located with known QTLs.

Introduction

In potatoes, the Wrst genetic linkage maps based on RFLP
markers were published in 1988 by Bonierbale et al. for the
interspeciWc cross Solanum phureja £ (Solanum
tuberosum £ Solanum chacoense) and by Gebhardt et al.
(1989) for a diploid S. tuberosum progeny. This latter map
also included locations of known genes such as PAL, Rubi-
sco, CoA ligase and glutamine synthetase. After further sat-
uration it was possible to align potato and tomato maps
using common probes descending from tomato (Tanksley
et al. 1992; Gebhardt et al. 1992). Other reduced linkage
maps were constructed in diVerent genetic backgrounds and
were aligned using codominant markers such as RFLPs,
and particularly SSRs, provided together with a linkage
map by Milbourne et al. (1998).

In order to improve the integration of available informa-
tion and to provide a highly saturated reference map of
potatoes, an ultra-high density (UHD) map of potato was
recently established based on AFLP markers (Isidore et al.
2004; van Os et al. 2006). The UHD map permits the align-
ment of other maps in potatoes based on integrated SSR
and RFLP reference markers or even by co-migrating
AFLPs (van Eck et al. 1995). The linkage map contains
over 10,000 markers derived from the analysis of 381
primer combinations in a population of 130 progeny geno-
types (van Os et al. 2006).

With increasing marker density, the inXuence of scoring
errors is also raised. These inXate map distances due to
additional false recombinants. Therefore, in order to
improve the quality of the map and to facilitate the control
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of scoring values, a novel “bin” concept based on segrega-
tion patterns in the whole progeny was developed. This
concept does not only consider the absolute numbers of
recombination events between marker pairs, but also the
particular genotypes in which recombination events occur
(Isidore et al. 2004; van Os et al. 2006). All markers of the
UHD map are organised in a total of 1,118 bins distributed
over the 24 parental chromosomes of the mapping
population.

However, linkage maps in potato are mainly based on
neutral DNA markers and it is generally unknown if coding
or non-coding regions of the genome are targeted by each
marker. The cDNA–AFLP technique is analogous to the
normal AFLP technique but uses, instead of genomic DNA,
double-stranded cDNA derived from mRNA as a template.
Therefore, the obtained cDNA–AFLP fragments or tran-
scriptome derived fragments (TDFs; Bachem et al. 1996)
target coding regions of the genome. The cDNA–AFLP
technique allows the monitoring of diVerential gene expres-
sion, and to identify genes involved in, or controlling, vari-
ous biological processes ranging from development to
responses to environmental cues (Breyne and Zabeau
2001). The technique has been applied in diVerent organ-
isms, and a variety of examples exist for plants also (Van
der Biezen et al. 2000; Durrant et al. 2000; Breyne and
Zabeau 2001; Bachem et al. 1996, 2001; Trindade et al.
2003; Samuelian et al. 2004; Ranik et al. 2006).

However, in addition, the cDNA–AFLP technique can
also be applied to obtain a genetic linkage map (Brugmans
et al. 2002). The allelic variants of constitutively expressed
genes can generate polymorphic cDNA–AFLP fragments
that segregate in the progeny and can, therefore, be used
like other markers for linkage mapping. However, the
diVerence is that since these markers are derived from
mRNA sequences of constitutively expressed genes, they
generally also represent sequences with a biological func-
tion as previously shown by Brugmans et al. (2002).

Extending the original work of Brugmans et al. (2002),
we report in this paper on the usefulness of cDNA–AFLP
for linkage mapping and marker development. At the same
time, allelic markers have been used to construct an inte-
grated transcriptome map in the potato.

Materials and methods

Plant material

Parents and a subset of 90 progeny genotypes of the UHD
mapping population described by Isidore et al. (2004) were
used for transcriptome mapping with the cDNA–AFLP
technique. The original mapping population was derived
from the cross between two diploid heterozygous potato

clones, SH83-92-488 £ RH89-039-16 (hereafter referred to
as SH £ RH).

For transcriptome mapping, whole in vitro plants with-
out roots were processed. In addition we performed com-
parative cDNA–AFLP analyses using in vitro plants,
mature leaves of greenhouse plants and tubers from parents,
and a subset of 12 progeny genotypes of the UHD mapping
population. Materials were always of the same age, but pos-
sible diVerences at the physiological stage were not consid-
ered. Since the experimental conditions were homogenous
for all materials under study, we assume that mRNA popu-
lations from genes that are continuously expressed (consti-
tutive expression) were targeted and induced expression
can be neglected.

Furthermore, we cloned and sequenced four co-migrat-
ing TDFs in several of the following Solanum wild species
accessions: S. venturii (vnt 8239), S. yungasense (yun
2173), S. weberbaueri (wbr 2724), S. multidissectum (mlt
931), S. pinnatisectum (pnt 8175), S. polyadenium (pld
8182), S. polytrichon (plt 53650), S. leptophyes (lph
27215), S. papita (pta 15442). The three letters encode the
species and the numbers represent the collection number
(Ruiz de Galarreta et al. 1998).

Molecular techniques

An improved cDNA–AFLP technique described in detail
by Breyne et al. (2003) was used and applied to parents and
progeny genotypes of the mapping population. Total RNA
was extracted from all materials using the method
described by Bachem et al. (1998). Total RNA concentra-
tions were estimated by a spectrophotometer and visualised
on 1% agarose gels. Poly-A+ RNA was obtained from
10 �g of total RNA using 5� biotinylated oligo (dT) primer
bound to paramagnetic beads coated with streptavidin
(Dyanabeads M-280 Streptavidin, DYNAL, Oslo, Nor-
way). First and second strand cDNAs were synthesized
according to Sambrook et al. (1989). Double-stranded
cDNA (ds-cDNA) was digested with AseI and TaqI (NEB
Biolabs Inc., New Brunswick, NE, USA) followed by liga-
tion of AseI and TaqI adapters with T4 DNA ligase (Invit-
rogen Inc., Barcelona, Spain). PCR reactions for cDNA–
AFLP ampliWcations were carried out as described by
Bachem et al. (1998). Primers were labelled for the speciWc
ampliWcations with either of the Xuorescent infrared dyes,
IRD800 or IRD700 (LI-COR, Lincoln, Nebraska, USA).
AmpliWcation products were denatured and separated on
6% denaturing polyacrylamide (19:1) gels. They were visu-
alised on a LI-COR 4200-S1 DNA Sequencer and Frag-
ment Analysis System as described by the manufacturer
(LI-COR, 1997).

Several cDNA-fragments were cloned and sequenced
using standard methodology (Sambrook et al. 1989). The
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TA Cloning Kit (Invitrogen Inc., Barcelona, Spain) was
used for cloning in accordance with the instructions of the
manufacturer. We sequenced three clones of each TDF in
order to determine the consensus sequence.

Data analyses

Sequence homology searches were performed in the Gen-
Bank database (Benson et al. 2007) accessed through the
NCBI homepage (http://www.ncbi.nlm.nih.gov/). We used
the BLASTn and BLASTx search algorithms (Altschul
et al. 1997). Multiple sequence alignments were carried out
using the Clustal W algorithm (Chenna et al. 2003) through
the WEB server of EBI (European Bioinformatics Institute;
http://www.ebi.ac.uk/clustalw/).

Presence and absence of each segregating fragment was
scored in parents and progeny genotypes of the mapping
population. Linkage map construction was performed in
several steps. Initially, parental linkage maps were estab-
lished by arranging cDNA segregation patterns into the
“bins” of the UHD map.

The methods to obtain a skeleton map of ordered bins
are described in detail by van Os et al. (2006). Basically a
“bin” represents a segregation pattern (presence/absence)
of the markers contained by the bin, across the genotypes of
the whole mapping progeny. The distance between two
adjacent bins is one recombination in a speciWc genotype. If
several recombination events occur between adjacent bins,
so called “empty” bins are generated. We used the BIN-
MAP Software (WAU, Laboratory for Plant Breeding,
unpublished) to identify the most likely position of cDNA–
AFLP markers relative to the skeleton bin map, by compar-
ing the segregation pattern of the marker with the segrega-
tion patterns of the bins (van Os et al. 2006). This method
also conveniently permitted the integration of markers with
distorted segregations in the framework of existing bins.

In addition, we developed software in house (APODAT,
unpublished) to generate graphical genotypes for the detec-
tion of singletons (unlikely double crossover events in adja-
cent bins for the same genotype; van Os et al. 2005) and to
improve data quality. During iterations of tentative place-
ment of markers, singleton checking in the lab, and
renewed placement of markers, we Wnished with clean data,
or discarded markers with ambiguous bin assignments.

On the other hand, all segregation data (presence/
absence) were processed with the MAPRF Software (Ritter
et al. 1990; Ritter and Salamini 1991) in order to produce
an integrated transcriptome map of the population. For this
purpose, initial marker orders were maintained within
parental linkage groups as determined by BINMAP. The
corresponding homologous linkage groups were integrated
using the methods described by Ritter et al. (1990) and Rit-
ter and Salamini (1991). In this case, anchor points were

constituted by putative allelic cDNA–AFLP fragments
shared by the two parents within the same primer combina-
tion (PC), and/or by common fragments (bridge markers)
that showed recombination frequency (RF) values of zero
with individual fragments of both parents. In this way, we
took advantage of the more precise estimates of RF values
for allelic conWgurations (Ritter and Salamini 1991). More-
over, some common markers were associated with the bins
of individual markers if RF values of zero were observed
between a common and an individual marker.

Initially, we have assumed allelism between fragments
from the same PC when one of the following three condi-
tions were met for our mapping population: (1) allelic frag-
ments of the same parent were identiWed as cDNA
fragments in repulsion with zero recombination, (2) puta-
tive alleles from both parents were detected involving one
common allelic fragment in repulsion and with recombina-
tion values of zero, (3) when a maternal and a paternal
marker mapped to a similar position on homologous chro-
mosomes and similar distances, with a closely linked
bridge marker, were observed. In addition, we sequenced
several such fragments in order to verify their allelic nature.

Results

Polymorphisms

A total of 100 primer combinations (PCs) were processed
for the analyses (Table 1). These PCs generated 749 segre-
gating cDNA–AFLP fragments, which ranged between 1
and 20 fragments per PC. In total, 272 fragments descended
from the SH parent, 251 from RH, and 226 bands were
common to both parents of the UHD mapping population
(Table 1). These proportions between maternal, paternal,
and bridge markers resembled the proportions also
observed with genomic AFLP markers in this material (van
Os et al. 2006). Distortions were present in 107 fragments
(14.2%), which showed signiWcant deviations from the
expected segregation ratios of 1:1 or 3:1, respectively.

Linkage mapping

Due to stringent quality control of the data, most of the seg-
regating TDFs, including those with distorted segregations,
could be integrated directly into the existing parental bins,
since the corresponding segregation patterns were identical
for the genotypes under study. The parental linkage groups
contained 269 SH speciWc (98.8%) and 248 RH speciWc
markers (98.8%). Moreover, 179 cDNAs common to both
parents (79.2%) were associated with the UHD bins based
on RF values of zero as described above. The cDNA frag-
ments were located in 179 SH speciWc bins out of 569
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Table 1 Observed segregating polymorphisms of cDNA–AFLP primer combinations

No. PC No SH No RH No CM Total no. Al-Loc No. PC No SH No RH No CM Total no. Al-Loc

1 AC/AA 3 0 1 4 2 53 CC/CG 1 5 4 10 1

2 AC/AC 7 4 4 15 2 54 CC/CT 2 7 0 9

3 AC/AG 7 10 2 19 1 55 CC/GA 3 2 4 9 2

4 AC/AT 5 4 3 12 1 56 CC/GC 4 8 4 16

5 AC/CA 2 0 3 5 57 CC/GG 7 1 7 15 1

6 AC/CC 0 0 2 2 58 CC/GT 3 2 2 7

7 AC/CG 1 2 0 3 59 CC/TA 5 6 6 17 3

8 AC/CT 2 2 0 4 60 CC/TC 9 3 6 18 1

9 AC/GA 11 5 1 17 1 61 CC/TG 2 3 0 5 1

10 AC/GC 5 2 1 8 62 CC/TT 6 8 6 20 4

11 AC/GG 3 1 2 6 1 63 CG/AA 2 4 0 6 1

12 AC/GT 2 4 2 8 1 64 CG/TAC 6 0 1 7

13 AC/TC 3 4 9 16 1 65 CG/CG 1 0 0 1

14 AC/TG 1 3 0 4 66 CG/CT 0 0 2 2

15 AC/TT 2 1 4 7 1 67 CG/GA 1 2 1 4

16 AG/AA 1 2 1 4 68 CG/GC 6 1 3 10 1

17 AG/AC 4 3 0 7 1 69 CG/GG 0 0 3 3

18 AG/AG 3 3 1 7 1 70 CG/GT 2 1 0 3

19 AG/AT 1 0 1 2 71 CG/TA 5 2 0 7

20 AG/CA 1 1 1 3 72 CG/TC 1 5 1 7 1

21 AG/CC 2 4 1 7 1 73 CG/TG 2 1 2 5

22 AG/CG 4 1 2 7 1 74 CT/AA 5 6 2 13 1

23 AG/CT 4 4 2 10 75 CT/AC 1 3 2 6 1

24 AG/GA 2 2 4 8 76 CT/AG 2 6 5 13 2

25 AG/GC 5 4 3 12 2 77 CT/AT 3 5 5 13 2

26 AG/GG 1 1 0 2 78 CT/CC 2 0 1 3

27 AG/GT 4 1 2 7 79 CT/CG 4 7 2 13 2

28 AG/TA 1 0 0 1 80 CT/CT 0 0 2 2

29 AG/TC 1 2 2 5 1 81 CT/GA 4 3 0 7

30 AG/TG 2 2 1 5 82 CT/GC 7 1 0 8

31 AG/TT 0 2 2 4 1 83 CT/GG 3 2 2 7 1

32 AT/AA 0 1 0 1 84 CT/GT 1 2 0 3

33 AT/AC 0 3 0 3 85 CT/TG 0 0 3 3 1

34 AT/AG 3 2 0 5 1 86 GA/AA 6 1 3 10

35 AT/AT 0 1 3 4 87 GA/AC 2 4 2 8

36 AT/CA 2 1 4 7 1 88 GA/AG 1 1 0 2

37 AT/CC 1 2 0 3 1 89 GA/AT 3 3 0 6

38 AT/CG 1 1 2 4 90 GA/CA 1 2 2 5 1

39 AT/CT 2 1 0 3 91 GA/CC 3 2 0 5

40 AT/GA 1 1 2 4 92 GA/CG 2 3 2 7

41 AT/GC 7 2 1 10 93 GA/CT 1 4 7 12 1

42 AT/GG 1 3 6 10 2 94 GA/GA 1 2 3 6 1

43 AT/GT 5 4 1 10 95 GA/GC 0 1 1 2

44 CA/AA 4 1 6 11 96 GA/GG 3 3 1 7 1

45 CA/AC 0 2 4 6 97 GA/GT 2 2 1 5 1

46 CA/AG 0 1 4 5 98 GA/TA 1 5 2 8 2

47 CA/AT 3 3 4 10 1 99 GA/TG 1 2 2 5

48 CC/AA 6 5 5 16 1 100 GA/TT 4 4 5 13 2
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(31.5%) and in 181 out of 549 RH speciWc bins (33.0%),
respectively. In addition, 11 empty bins of the UHD map
could be Wlled with 18 TDFs based on consistent recombi-
nation events with both neighboured bins. Seventeen mark-
ers located at 15 loci exceeded the distal bins of the 24
parental linkage groups by one or two recombinants each.
On the other hand, three distal bins from SH and 21 from
RH were not targeted by TDFs.

Based on the initial parental linkage groups and allelic
loci or bridge markers as anchor points, an integrated link-
age map was produced as described in “Materials and
methods”. The orders of fragments in the parental linkage
groups were identical when analysed by MAPRF Software.
However, recombination frequencies of the corresponding
intervals showed smaller variations due to the reduced set
of genotypes in our study. In general, reductions of dis-
tances were obtained due to missing recombinants in the
additional genotypes of the UHD mapping population.

The characteristics of the integrated linkage map are
summarised in Table 2. Projection of parental linkage
groups was based on 89 anchor points, varying between
Wve and 11 for pairs of homologous linkage groups. Total
map length was 795.0 cM and the individual linkage groups

varied between 55.1 and 81.3 cM in length (average length
66.3 cM). They contained between 37 and 85 markers each
with an average of 58 markers per linkage group. Linkage
groups contained between 12 and 45 SH speciWc markers,
between 14 and 33 RH speciWc markers, and between 8 and
23 cDNA–AFLP fragments common to both parents. On
average, a linkage group was composed of 14.9 common
cDNA fragments and 22.4 and 20.7 SH and RH speciWc
markers, respectively.

Figure 1 shows a graphical representation of the inte-
grated linkage map displaying the location of parent-spe-
ciWc and common cDNA markers, anchor points, and
allelic fragments. The Wgure also shows bin assignments of
the markers in brackets.

In total, 307 loci were detected, containing on average
2.3 markers each. A total of 146 single marker loci (47.6%
of all loci) were observed, but also 18 loci with six or more
markers distributed over all parts of the linkage groups. The
largest cluster containing 14 markers was detected on link-
age group (LG) XI. Seven to ten TDFs were found for two
loci of LG IV and VI and for three loci on LG XII. The
average distance between markers was 1.14 cM. A total of
403 markers (57.9%) were linked with a recombination

Table 1 continued

PC selective nucleotides of primer combination with Ase/Taq adaptors, No SH, No RH, No CM number of SH speciWc, RH speciWc, and common
TDFs, respectively, Al-Loc no. of allelic loci revealed by the PC

No. PC No SH No RH No CM Total no. Al-Loc No. PC No SH No RH No CM Total no. Al-Loc

49 CC/AC 1 2 5 8 Total 272 251 226 749 66

50 CC/AG 4 3 6 13 1 Mean 2.7 2.5 2.2 7.4 0.7

51 CC/AT 8 1 3 12 3 Min 0 0 0 1 1

52 CC/CA 1 0 2 3 Max 11 10 9 20 3

Table 2 Characteristics of the 
integrated transcriptome map of 
the SH £ RH population

LG SH-M RH-M CM TM AP cM CL Fr NA SH bins RH bins Empty bins

I 45 17 23 85 11 81.3 5 11 24 19 2

II 22 26 11 59 8 64.9 4 8 17 18 1

III 15 16 16 47 6 78.4 3 9 13 12 0

IV 24 33 19 76 10 72.7 11 26 17 21 0

V 18 17 15 50 7 63.9 4 9 16 13 1

VI 26 16 19 61 8 62.9 5 12 13 15 2

VII 21 14 13 48 8 65.0 6 13 16 11 1

VIII 15 20 9 44 5 61.9 5 11 12 13 0

IX 23 25 17 65 6 62.9 5 10 15 20 0

X 12 17 8 37 5 63.9 3 7 11 15 0

XI 23 24 20 67 10 62.1 9 23 13 14 3

XII 25 23 9 57 5 55.1 6 12 12 10 1

Total 269 248 179 696 89 795.0 66 151 179 181 11

Mean 22.4 20.7 14.9 58.0 7.4 66.3 5.5 12.6 14.9 15.1 0.9

Min 12 14 8 37 5 55.1 3 7 11 10 0

Max 45 33 23 85 11 81.3 11 26 24 21 3

LG linkage group; SH-M, RH-M, 
CF, TM SH speciWc, RH spe-
ciWc, common, and total mark-
ers, respectively; AP number of 
anchor points; cM LG lengths in 
cM (Kosambi units); CL codom-
inant loci based on allelic frag-
ments; Fr NA total number of 
fragments composing the CL; 
SH bins, RH bins number of SH 
and RH speciWc bins which con-
tain at least one TDF; Empty 
bins number of new, former 
empty bins Wlled by TDFs
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frequency of zero to one or several markers. Distances
between adjacent TDFs were within 5.3 cM for 95% of all
markers. The two largest distances of 18.7 and 15.3 cM
were detected on LG III, but also, on LG VII and VIII, two
distances between 9 and 10 cM were observed. According
to �2 tests, the distributions of marker distances and marker
number per loci revealed highly signiWcant deviations from
uniform distributions.

An elevated number of putative allelic fragments were
observed based on the three criteria mentioned above. We

identiWed 66 loci involving 151 allelic fragments (21.7%
of all mapped fragments). In 49% of all PCs, at least one
locus composed of allelic fragments was detected. Several
PCs showed up to three and even four loci (Table 1). We
cloned and sequenced several allelic fragments from the
three mentioned conWguration types and determined their
homologies. We performed homology searches in public
databases to determine their possible biological function.
Table 3 shows the results. In all 11 cases studied, the alle-
lic nature of the segregating TDFs could be veriWed. The

Fig. 1 Integrated transcriptome 
map from the cross SH £ RH. 
Marker names: SH speciWc, RH 
speciWc and common TDFs are 
indicated with preWxes “S”, “R” 
and “C”, respectively. The num-
ber following these corresponds 
to the PC number in Table 1 and 
the observed migration values 
[bp] are indicated in the marker 
name extension. Bin assign-
ments [x/y]: The values in brack-
ets indicate the assignments of 
markers to SH bin x and RH bin 
y. Values in bold and showing an 
“e” represent assignments to 
empty bins of the UHD map. Al-
lellic fragments are indicated in 
bold and have the same PC num-
ber. Markers exceeding the dis-
tal bins of the UHD map are 
indicated in italics and have a 
proper cM position without bin 
assignment. Markers represent-
ing an anchor point are under-
lined

[-/1] R71_310
C76_2060,0

[1/-] S23_1720,1
[-/2] C4_198H
R71_3251,2

[3/3] R7_57
S71_322 S81_235
S86_224

2,7

[4/4] C4_196H
S60_183 R75_2975,6

[e/-] S26_170
S83_490 S40_1249,9

[11/-] S82_14813,3
[13/-] R62_494
R93_330 C14_112H
R14_173

13,4

[15/-] S42_12415,7
[-/14] R11_9720,8
[29/18] C20_11224,9
[31/-] S10_67
S38_340 S42_89
S42_91 S59_240
S60_347 S90_113

26,0

[38/23] C47_176
S82_317 S89_34230,3

[-/27] R87_31532,8
[45/-] S9_274
S9_27635,1

[-/33] R77_203
C77_26335,4

[e/-] S56_261
S70_21137,7

[50/-] S63_14641,5
[54/-] S40_13945,9
[59/-] S18_14849,9
[63/-] S63_55252,7
[67/-] S43_320
R74_400 S84_153
S100_400

56,4

[-/71] R30_206
R56_14059,3

[72/74] C77_348
S56_15061,3

[75/-] S8_55
S19_10563,1

[81/78] C47_257
C62_30066,2

[84/-] S42_154
S83_4068,0

[86/81] C80_94
S22_210 S100_128
C100_162 C100_164

69,2

[87/-] S8_117
S81_33569,7

[-/89] C55_70
R56_24072,1

[91/-] S11_305
C55_327 S55_7273,4

[-/95] R32_333
C52_24075,2

[-/97] C35_297
R35_7976,1

[-/98] C41_206
R90_13276,6

[93/99] C43_50
C60_240 S91_196
C94_79

76,7

[95/102] C47_114
C12_222H S40_13578,5

S48_53279,8
S8_23981,3

Lg:I

[1/-] S74_600,0
[4/-] S8_651,5
[5/1] C55_358
S55_361 R55_363
S72_395 R93_141

2,3

[8/3] S7_75
S22_129 S53_4903,4

[-/8] R3_115
R4_70 R59_1155,8

[9/11] C2_55H
S50_1007,5

[16/17] C23_80
S57_39512,7

[-/18] R79_445
R87_14313,6

[-/19] R16_44
R17_4515,4

[24/-] S64_152
S86_19716,2

[25/-] S64_228
S68_15216,9

[-/24] R56_294
R87_10219,2

[40/29] R74_289
C74_290 C77_167
R8_118 S24_200
C49_333

24,5

[-/31] R43_39025,7
[42/-] S9_9226,1
[-/33] R3_243
R81_13826,9

[45/-] C74_23828,7
[52/46] S3_273
C12_142H36,6

[-/51] R13_170
R100_18639,2

[61/-] S71_255
S71_34343,3

[63/59] C35_28745,1
[70/-] S23_16647,5
[e/-] S43_16051,7
[82/68] R22_110
S54_50 C57_16255,0

[-/73] R9_238
R31_28857,4

[-/75] R97_14258,8
[95/80] R76_180
R76_197 C76_604
S3_92 R79_340
R59_145

64,9

Lg:II

[-/1] C100_2640,0
[-/3] R54_5501,4
S4_1412,2
[1/5] C12_122H
R28_139 R28_133
C48_437 S39_116
S81_289 C48_305

3,6

[6/10] C79_285
C80_290 R81_2676,7

[-/32] R54_42325,4

[-/37] R3_340
R62_50 R92_14229,3

[-/38] R79_18830,6

[43/-] C23_400
S47_154 S54_422
S65_280 S73_280

35,8

[52/53] R3_110
C76_25342,5

[54/-] S64_21843,1
[56/-] S78_230
S98_36444,1

[80/-] S76_32359,4
[81/-] S91_5061,4
[86/-] C12_295H64,5
[-/70] R72_138
R72_142 R73_121
R98_366 R99_242

65,8

[89/-] S56_7566,1
[94/72] S94_157
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average sequence identities from Clustal W alignments of
the analysed fragments ranged from 100 to 84.1% in ten
cases. In one case, the identity was lower (49.6%), but the
homology search with known genes revealed an identical
association, indicating that overlapping partial cDNAs of
the same gene had been targeted. In nine cases, large
homologies with known genes were observed. These
include ribosomal genes, transporter proteins, and
enzymes (Table 3).

Moreover, in four case studies, we cloned and sequenced
co-migrating cDNA–AFLP markers in diVerent accessions
of Solanum wild species (SWS) as speciWed in “Materials
and methods” and performed homology searches and com-
parisons. The results are also indicated in Table 3. In all
four case studies, we could conWrm that the co-migrating
TDFs indeed represented alleles of the same gene. The
average sequence identities identiWed by Clustal W align-
ments ranged from 98.7 to 90.3%. We had chosen TDFs for
this analysis, which could be potentially co-located with
known QTLs for resistance (see “Discussion”) and found in
two cases (no. 1 and 2 in Table 4) large homologies with
known resistance genes.

Finally, we conducted comparative expression analyses
of constitutively expressed genes in diVerent plant materi-
als. Table 5 summarises the results of expression proWling
for in vitro plants without roots, mature leaves and dormant
tubers. A total of 14 primer combinations were evaluated in
these materials using parents and 12 progeny genotypes in
each case. Over 88.7% (102) of the 115 segregating TDFs
observed in all materials were also present in the cDNAs
derived from in vitro plants. Fewer fragments were found
in mature leaves and tuber materials (88 and 61 bands,
respectively). In 50% of all PCs, one or two segregating
TDFs, speciWc for mature leaves and/or tubers, were
detected, but only 13 of such extra bands were observed in
these materials (Table 5).

Discussion

The adopted methodology described above led to the estab-
lishment of an integrated transcriptome map of the
SH £ RH mapping population which displays the relative
position of speciWc markers from diVerent parents within
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the genome. The integrated map has a considerable density
of nearly 700 markers and an average number of 58 mark-
ers per linkage group. At the same time, we could assign
nearly all of the individual cDNA fragments and most of
the common fragments to the bins of the UHD reference
map, linking in this way the information provided by both
mapping systems.

Compared with the distribution of genomic AFLP mark-
ers in the UHD map, we obtained good genome coverage,
although with less markers and more gaps. Additional TDF
markers located in empty bins or situated in positions
exceeding distal bins compensated for missing TDFs in dis-
tal bins of the UHD map. Some of the observed gaps were
also found in the parental linkage groups of the UHD map
(van Os et al. 2006). Clustering of TDFs was observed and
conWrmed by the signiWcant deviations from uniform distri-
butions of marker distances and marker number per loci.
One explanation for these Wndings could be the presence of
hot and cold spots of recombination that have been
described in humans (JeVreys et al. 2005) and plants
(Schmidt et al. 1995). We can also discard visually an asso-
ciation with putative centromere regions of the map of van
Os et al. (2006). Lack of centromeric clustering of cDNA–

AFLP markers was also observed by Brugmans et al.
(2002).

Compared with genomic AFLP markers, we found
within identical PCs, in many cases, TDFs that could repre-
sent allelic fragments based on the criteria described above.
Sequence analyses conWrmed their codominant properties.
These Wndings are not surprising if we consider that TDFs
are analogous to expressed sequence tag (EST) markers.
EST markers have codominant properties and are con-
served between species to a certain degree (Temesgen et al.
2001; Fulton et al. 2002). While map positions of TDFs are
known but not their sequences, the opposite is the case with
EST markers.

However, we cannot discard the possibility that instead
of true alleles, a closely linked paralog has been targeted by
chance. Nevertheless, considering the resolution of the
map, this would not alter the results and the codominant
properties of TDFs make them useful for aligning parental
linkage maps as in our study.

In all four case studies, large homologies between TDFs
in diVerent SWS accessions were observed, indicating their
allelic nature. A detailed co-migration analysis of cDNA–
AFLP fragments is useful in order to determine the degree
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of transferability to a broader genetic background. Rouppe
van der Voort et al. (1997) observed locus speciWcity at
least for co-migrating genomic AFLP markers in a varying
genetic background. However, compared with genomic
AFLP markers, we observed a 4-fold reduction in the num-
ber of markers per primer combination. Since coding
sequences are under purifying selection, they are much
more conserved as compared to non-coding sequences,
which are targeted by genomic AFLP.

The relationships between TDFs and ESTs should also
allow them to predict each other by considering parameters
such as sequence information of the EST, restriction site
sequences, and size of expected or observed TDFs. The
software GeneEST (Qin et al. 2005) has been developed
based on these hypotheses.

Transcriptome mapping was conducted using in vitro
plants cultured under homogenous conditions in order to
avoid artefacts due to variation in gene expression levels.
Comparative expression analyses in diVerent tissues
revealed only small amounts of additional polymorphisms
in mature leaves and tubers. Considering the increase in
workload for preparing additional plant materials, the same
eYciency can be achieved by increasing the number of ana-
lysed PCs using whole in vitro plants. Nevertheless, for
detecting tissue speciWc genes, diVerential cDNA–AFLP
analyses would be the approach of choice.

The origin of absence/presence polymorphisms in tran-
scripts could be due to diVerences in gene expression or
sequence polymorphisms in the coding region. Brugmans
et al. (2002) investigated this aspect and found that the vast

Table 3 Homologies with known genes and sequence identities of cDNA–AFLP fragments from the same PC representing putative alleles in
diVerent Solanum accessions

CF fragment common to both parents, Clustal W average sequence identity obtained from Clustal W alignments

Case no. Origin/allele 1 Origin/allele 2 Clustal W (%) Homologous gene Blast X accession no. e-value

Homologies between putative allelic fragments

1. DiVerent alleles of the same parent

1 SH 
CC/AT-119

SH 
CC/AT-122

100 Unknown

2 SH 
GA/GT-292

CF 
GA/GT-281

93.7 SCD1 (stomatal cytokinesis-defective) NP_850959 1E-35

3 RH 
CA/AT-300

CF 
CA/AT-298

94.8 50S ribosomal protein L13. (CL13) P12629 9E-27

4 CF 
CC/GG-301

CF 
CC/GG-110

49.5 Alanine aminotransferase AAR05449 9E-46

5 CF 
GA/TT-162

CF 
GA/TT-164

97.5 Unknown

Case no. SH allele 1 RH allele 2 CF allele 3 Clustal W (%) Homologous gene Blast X accession no. e-value

2. DiVerent alleles in both parents

6 CC/GA-361 CC/GA-363 CC/GA-358 90.3 Unknown NP_195785 6E-42

7 GA/GT-292 GA/GT-282 GA/GT-281 92.4 Os01g0833500 (Oryza sativa) NP_001044713 1E-69

8 CA/AT-301 CA/AT-300 CA/AT-298 80.6 Copper transporter protein CAA90018 3E-21

9 CC/GA-361 CC/GA-363 95.1 Proteosome/cyclosome regulative subunit ABE89010 2E-35

10 GA/GT-292 GA/GT-282 92.7 Putative nitrate transporter AAB95302 5E-63

11 CA/AT-301 CA/AT-300 84.1 EMB2394; structural constituent of ribosome NP_172011 6E-38

Table 4 Homologies with known genes and sequence identities of cDNA–AFLP fragments from the same PC representing potential comigrating
alleles in diVerent Solanum accessions

CF fragment common to both parents, Clustal W average sequence identity obtained from Clustal W alignments

No. Comigrating 
fragment

In genotypes Clustal W (%) Homologous gene Blast X 
accession no.

e-value

Homologies of co-migrating cDNA–AFLP fragments

1 AT/CA-135 SH wbr 2724 vnt 8239 pnt 8175 93.0 Class III chitinase ASD27874 2E-05

2 CC/TA-240 SH yun 2173 mlt 931 pld 8182 98.7 LRR protein NP_191196 1E-36

3 CC/TA-115 RH pta 15442 plt 53650 90.3 SNF2 transcriptional factor NP192575 2E-05

4 AT/CA-293 SH pta 15442 plt 53650 lph 27215 95.4 S-adenosyl-L-methionine sinthetase ABB02634 1E-61
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majority of these polymorphisms resulted from genomic
sequence polymorphisms. Comparing the available
sequence data of putative alleles and co-migrating allelic
fragments in diVerent backgrounds, we always detected
smaller sequence divergences and even SNPs supporting
this hypothesis. Also, the low amount of additional poly-
morphisms detected in diVerent tissues indicates that the
TDFs represent mainly highly expressed house-keeping
genes. It would be interesting to conduct the same mapping
experiment after, for example, pathogen inoculation of the
whole progeny and to compare the variation in transcript
abundance and nature of the TDFs.

Compared with neutral markers, TDFs generally have a
biological meaning representing a particular gene as shown
in Table 3 and as previously also observed by Brugmans
et al. (2002). TDF markers that map to bins where QTLs
are located may represent candidate genes controlling the
particular trait in the mapping population. It is also possible
to project QTL locations from other experiments to certain
bin regions in a reference map based on common marker
intervals in both maps. We have chosen for homology anal-
yses (Table 4) TDFs that are co-located with known QTLs
for resistance. Although the probability that these TDFs
explain co-localized QTLs is very low on a case-by-case
basis, we found in two cases homologies with resistance
genes. Considering that families of resistance genes are

frequently organised in clusters (Gebhardt and Valkonen
2001), the chance of Wnding a target gene of interest is
higher in this case. If the TDFs do not represent such candi-
date genes, then they constitute at least useful markers for
marker-assisted selection.
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